
Scaling WebApps

June 4 2013 Volta Halifax

Lunch and Learn

Tim Chipman

FortechITSolutions.ca

PLEASE NOTE

These slides are provided as a courtesy to

those who attended the seminar.

If you like them, please feel free to

distrubute the URL to friends and

colleagues, and they can download the PDF

directly.

PLEASE DO NOT REDISTRUBUTE OR

BUILD YOUR OWN CONTENT FROM

THESE – without contacting me.

Thanks!

Context & Disclaimer :-)

• Limited Time, Big Topic. This is only an

'Overview'

• But - please ask questions, help make this

as relevant for you if possible!

Busdev Slide

Fortech IT Solutions

• Halifax Based IT Consulting Services

• Server Management, Virtualization, expertise with open-

source platforms

• 5 years and still going, (15+ yrs experience)

• Need help? I love interesting projects.

• Special deal, extra value, VMs for rent :-)

(902) 442-6633

Tim.Chipman@FortechITSolutions.ca

http://FortechITSolutions.ca

Talking about What ?

• Background / Intro / Context

• Old School

• Slightly less Old School: LAMP

• Horizontal scaling

• Tuning & Tweaking

• "AAS" platforms

• Considerations: Design, Targets, Planning

• Best Pick ?

• Some good tools to know of.

• (Questions, comments, Discussion -

ongoing)

Credit where due

Almost all images in the presentation are

shamelessly snaffled from google images

searches

virtually nothing here was created by me

mwah ha hahahah!

(maniacal laugh, maniacal laugh)

Context

You have a service

Clients want the service

Clients will use the service

Some clients will pay for the service

You have a business model ?

You have a plan ?

Old world: static web pages

New World: Dynamic, Personalized

Better Examples of New World...

Back to what we're talking about...

You have a service

Clients want the service

Clients will use the service

Some clients will pay for the service

You have a business model ?

You have a plan ?

Background - client server model

accessibility

availability

Old School

Old School

"Sort of" Less Old-School: LAMP

Conventional Approach

• monolithic servers, designated roles

• specific data flow, points of failure

• horizontal scale out for redundancy,

performance

Conventional Approach

Complexity of management

• "Physical stuff"; OS

• Components (DB, Web, App) plus extras

(App security model, network security, etc)

Conventional Approach

What does this all look like?

Conventional Approach

Or maybe this:

Conventional Approach

Even more amusing:

Conventional Approach

Long and short of it?

• Specific vendor hardware (Sun, IBM, etc)

• Specific OS (Solaris, AIX, etc)

• Specific DB (Oracle, DB2, etc)

• Specific App Server (WebLogic, Websphere)

• Each slice in the stack takes $$$

Conventional Approach - LAMP

Long and short of it?

• hardware (Commodity x86)

• Linux OS (Debian, CentOS, Ubuntu, etc)

• Open DB (MySQL, Postgres, etc)

• Open 'App Server Layer' (Tomcat/Java or

Php, Python, Ruby, etc)

• Each slice in the stack takes less $$$

Open Source pieces, commodity hardware, but

same structures.

Horizontal Scaling

With open source stack and commodity

hardware, scale-out is not constrained by

$license costs; more by incremental 'platform

expenses' and 'architecture:management'

c-(lamp) --> ccccc-(lb)-(lap)(lap)(lap)(lap)(lm)

or

c-(lamp) --> c^x-(lb)-(lap)^y(lm-r)(lm-r)(lm-w)

Horizontal scaling

Step 1: crank resources; "cpu/ram is cheap"

Step 2: Not enough? Divide and conquer:

• DB read vs DB write

• static web vs dynamic web content

• Delivery static from different host &/use CDN

• load balancer(s) to fan out (client facing

typically)

Tweaking & Tuning

Cache

• web: nginx, varnish - proxy or subdivision /

static / pseudo-dynamic

• rendered app objects (php-apc)

Tweaking & Tuning

• db queries (memcached)

• App: Internal cache, logic, optimization

Tweaking & Tuning

Simple physical

• lower latency storage for DB, high-demand

IO subsystems (Ram, SSD, SASRaid10)

• higher bandwidth / lower latency (IB vs

Ether? 10g vs 1g vs 100M vs ..)

LAMP /

Horizontal

Scaled /

Tweaked

Bottom line:

lots can be done.

But it can take

a lot of

time:effort. Is

this really what

drives your

business?

AAS Model

"As A Service"

• abstracts components of service for delivery

• "simplification" of model

Trade offs?

• constrained tools / specific APIs

• harder to build than with 'conventional

toolset'

• pricing, lock in

Rule one of I.T. Club

...Rule 1 of IT club is you don't talk

about prices....

"Amazon has broken that rule in a rather

spectacular manner, and now there's hell to

pay"

Source: http://www.theregister.co.uk/2013/05/30/amazon_cloud_killing_trad_it/

re:

"Morgan Stanley analysts write in a report, Amazon Web Services: Making

Waves in the IT Pond, that was released on Wednesday. Brocade, NetApp,

QLogic, EMC and VMware are said to face the greatest "challenges" from

the growth of AWS"

"Workloads are flying into AWS for several

reasons, and Morgan Stanley believes the

most compelling ones are:

 No upfront investment

 Pay for Only What You Use *

 Price Transparency

 Faster Time to Market

 Near-infinite Scalability and Global Reach

 Leveraging Scale – as AWS Grows Pricing Keeps

 Coming Down"

AAS

Amazon EC2

Rackspace Openstack

Google Compute

Google App Engine

Heroku

MongoHQ

Microsoft Azure

Continuum - Comparison

Pure Hardware-Dedicated Server -runs Service

• Server hardware you own, your data centre

• Server hardware you rent, 3rd party colo

• VM Servers you rent, 3rd party colo

• Google Compute, Amazon, Rackspace dynamic

provisioned API managed VMs

• Google AppsEngine, Heroku, MongoHQ

Pure Service - No Hardware, No Server

"AAS" (kind of)

Amazon EC2, Rackspace OpenStack, Google

Compute:

• 3 vendors, but all same basic model.

• API managed VM instances

• Best fit for exceptionally 'peaky' workloads

• Price structure - great value if you can

dynamically manage VM instances

Day, Week - Example PeakyLoad

AAS

Google App Engine

• custom versions of python, java (php, go)

• custom db (NoSQL, CloudAKAMySQL, etc)

• entirely different model from Amazon. Build

app and logic is core.

Heroku

• similar - abstracted / high level mgmt

• focus on processes, workers

• 'less different from normal' python:java:ruby

AAS

To some extent:

• answers the question that service providers

have:

• "How can we get more revenue from our

clients (you), with less service, less

infrastructure, and lower costs?"

• i.e., not inherently a no-brainer 'win win' (for

you)

• there is a cost for the 'simplicity and

abstraction'

Rackspace vs Amazon - illustrative pricing ref info

(network traffic *excluded* - costs extra..)

Considerations

Design

Targets

Planning

• plan early, stay focused

• proper sizing and focus is critical

• expect to build it all and throw it all away

• (likely; quite possibly a few times)

Best Pick?

Classic Architecture (Traditional / VMs) or

Dynamic Architecture (AAS / Abstracted) ?

Classic "Static" Architecture

• Workload is predictable, well characterized

o (and potentially (HIGH:DEMANDING) i.e. drinks lots

of cpu,ram,disk 'all the time')

• no _/hockeystick_/ curve

• lower costs easily possible, so long as

'fiddley management' is minimal

Dynamic "AAS" Architecture:

• Less characterized, or characterized to be

less predictable

• suitable for self-manage api scaling?

• deploy:scale on demand (ie, don't just get

bigger - get smaller - on demand)

• otherwise you pay the earth, miss all the

benefits
o (AAS morphs to "A Stupid Solution" or ASS)

Best Pick?

Catch 22?

• Can't know best pick until you know your needs

• Can't know your needs until you build something

• Building something takes non-trivial-effort

• ARRGH

Good tools FYI

Proxmox VE

• open source VM platform

• Linux containers, KVM full abstraction

Why Virtualize? -> Better to ask, Why not ?

(Topic for another day)

Monitor, monitor, monitor.

"It's 5 am, do you know what your services are doing?"

Cacti, Munin, Nagios, Zenoss, Spiceworks, whatever.

Thanks!

Your time and attention is appreciated!

Questions?

• Any questions?

• Really, any questions ?

